DEEP SPACE PHOTOGRAPHY
- a rough guide

Dr Rob Lines
DEEP SPACE PHOTOGRAPHY
1. PRE-REQUISITES
 - Mount
 - Camera / Lens / Telescope
 - Guiding
 - Software

2. TAKING IMAGES

3. PROCESSING – the fun part!
 - Workflow
 - Example M31
DEEP SPACE PHOTOGRAPHY

For *faint fuzzies* need long exposure times

- One long exposure?
- Multiple shorter exposures best
PRE-REQUISITES

Mount

- Multiple long exposures require an equatorial tracking mount and a sturdy tripod – no image rotation
 - Fork-type with wedge
PRE-REQUISITES

Cameras

- DSLR or Mirrorless
 - Remote Timer Required
 - In-built Filter Restricts Ha
 - Use in RAW Mode
 - 10 to 14 bits resolution gives 4000 to 16000 grey levels
 - JPEG is 8 bits (256 grey levels) and
 - In camera processing
PRE-REQUISITES

Cameras

- Dedicated Astro Camera
 - Colour or Monochrome
 - CCD or CMOS
 - Cooled Sensor $T \sim -25^\circ C$
 - Up to 16 Bit Images (65535 grey levels)

- Monochrome Camera
 - Filters Required
 - RGB
 - Narrow Band Imaging
 - Pixel Binning Option
 - 1×1: 36 pixels
 - 2×2: 9 pixels
DEEP SPACE PHOTOGRAPHY
Lenses and Telescopes

- TELEPHOTO LENS (>200mm)
 - No Attachment Issues with DSLR’s
 - Good for Medium to Wider Field Views
 - Primes Best but Zooms OK
 - Aspherical Lens Construction Minimises Coma

- Instructive to compare modern digital sensors with traditional photographic film
DEEP SPACE PHOTOGRAPHY

CCD/CMOS vs Film

- Orion: Horsehead and Flame Nebulae from Lowell Observatory
DEEP SPACE PHOTOGRAPHY
DSLR & Telephoto Lens

Canon T5i with 200mm lens ISO 1600 166 x 60s exposures
Sky Guider Pro
DEEP SPACE PHOTOGRAPHY

Telescopes

- A whole topic in itself!
- All Suitable – Refractor, Reflector and Compound (SCT)
- Key Factor is Focal Length \rightarrow FOV
 - Most designs have curved image fields
 - Flat field corrector desirable
 - For non-imaging Newtonians check back focus travel!
DEEP SPACE PHOTOGRAPHY

Telescopes

- Optical Coupling Camera to Scope
 - Direct (Prime Focus) – Best for Deep Sky
 - Compression (Focal Reducer) - Wide Field
 - Afocal – Eyepiece + Camera and Lens
 - Eyepiece Projection – Eyepiece + Camera
 - Negative (Barlow)

Best Used for Planetary Imaging
DEEP SPACE PHOTOGRAPHY

Telescopes

Attaching Scope to DLSR

- Refractor and Reflector
- SCT

Astro cameras generally attach by M48 adapter
DEEP SPACE PHOTOGRAPHY

Autoguiding

- Guide Camera Corrects for Drift and Mount PE
- Not Necessary if
 - Accurate Polar Alignment and
 - Short Exposures ~2min
- Guiding Needed for Longer Exposures / Narrow FOV
 - Finder scope + Guide Camera for FL < 1400mm
 - Off-axis Guider for FL > 1400mm
DEEP SPACE PHOTOGRAPHY

Useful Software

- FOV Calculator
- Cartes du Ciel
- CCD Calc
DEEP SPACE PHOTOGRAPHY

Useful Software

- Guiding
 - PHD2

- Camera Control and Image Processing
 - Deep Sky Stacker
 - IRIS
 - GIMP
 - Nebulosity
 - Maxim DL
 - StarTools
 - Photoshop CS6 + Plug-ins

Freeware

Purchase
DEEP SPACE PHOTOGRAPHY
At Last - Taking Images!

- Align and Calibrate Mount
- Focussing
 - DSLR Live View to Magnify Star Image
 - Bahtinov Mask

- Guiding
 - If Guiding, open PHD choose guide star and calibrate
DEEP SPACE PHOTOGRAPHY
Taking Images: DSLR

- Manual Mode (Bulb)
- Set ISO (800 – 1600)
- Set RAW Mode (highest bit level)
- Set Exposure 1 – 2min unguided; 1 – 5+ min guided
- Set Number of Exposures – S/N \(\propto \sqrt{n} \)
 - Try For At Least 1hr Total Exposure
- Test Shot – Check Histogram
- Go!
DEEP SPACE PHOTOGRAPHY

Taking Images: Astro Camera

- Parameters Set in Software
- Colour Camera: Set Exposures and Go
- Mono Camera + Filters
 - Colour - Red, Green, Blue
 - Possibility of LRGB Imaging – 4 Separate Exposures!

![Image 1](image1.png) ![Image 2](image2.png) ![Image 3](image3.png)

Brightness (Luminance) Colour (Binned)
Deep Space Photography

LRGB vs RGB

2hr Total Exposure

<table>
<thead>
<tr>
<th>LRGB</th>
<th>RGB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lum 1hr 1x1</td>
<td>RGB 3x40min 1x1</td>
</tr>
<tr>
<td>RGB 1h 3x20min 2x2</td>
<td></td>
</tr>
</tbody>
</table>

- LRGB → x2 Luminance Signal
- x2 Colour Signal to Noise

DSLR and colour astro camera users can convert the colour image to greyscale to give a synthetic luminance channel.
Deep Space Photography

Taking Images

- Take Calibration Frames
 - Darks
 - Flats
 - Dark Flats

Darks – Hot Pixels

Flats – Optical Defects and Dust

Lens cap on. Same exposure settings

Same focus setting. Expose (50% saturation) to evenly illuminated surface
DEEP SPACE PHOTOGRAPHY
Processing – Work Flow: DSLR

Raw Astro Frames → Subtract → Calibrated Raw Frames → De-Bayerise → Linear Colour

Dark etc Frames → Align and Stack →

Histogram stretch, Colour Balance → Gradient removal, Final Tweaks → Final Colour Image

Master Colour Image

Use as synthetic luminance → Convert RGB to Monochrome
DEEP SPACE PHOTOGRAPHY
Processing – Work Flow: Mono

- Raw Astro Frames
- Dark etc Frames
- Subtract
- Calibrated Raw Frames
- Align and Stack
- Initial L, R, G, B Images
- Image Processing
- LRGB Combine
- Final Image
- RGB
- Colour Image +
- Luminance Image
DEEP SPACE PHOTOGRAPHY
Processing Example – M31

- **EQUIPMENT**
 - QHY9M + RGB Filters
 - APM 107/700 Refractor
 - Finderscope Guiding
 - HEQ5 Pro Mount

- **EXPOSURES**
 - Luminance 15 x 5min
 - Red, Green, Blue 12 x 3min Binned 2x2
 - Darks, Flats, Dark Flats
DEEP SPACE PHOTOGRAPHY

Colour

- Red
- Green
- Blue

Calibrate Re-size → Align & Stack → Colour Combine

All performed in Nebulosity

RGB Initial
DEEP SPACE PHOTOGRAPHY

Colour

Initial Image – Dark and Red Bias
DEEP SPACE PHOTOGRAPHY

Colour

Initial Image – Red Bias Colour Balance Digital Development

Output

Input

Screen Stretch

Minimum Maximum

Update >>
DEEP SPACE PHOTOGRAPHY

Colour

DDP Demo

- Nebulosity
- Maxim DL
- Photoshop
DEEP SPACE PHOTOGRAPHY

Colour

Digital Development + Colour Balance
DEEP SPACE PHOTOGRAPHY

Colour

Need to increase colour saturation

Remove gradient
Gradient and Colour Demo

- Maxim DL
- Photoshop
DEEP SPACE PHOTOGRAPHY

Colour

Take a break!
Re-examine image
Adjust as necessary

Final Image
DEEP SPACE PHOTOGRAPHY

Expect to get at least this result from DSLR or Colour Astro Camera
DEEP SPACE PHOTOGRAPHY

Luminance

Raw Frames → Calibrate → Align / Stack → Good S/N? → Deconvolution

Original

Max Entropy
Lucy Richardson
Van Cittert
Fat Tail

Decon x5
DEEP SPACE PHOTOGRAPHY
Luminance

Stacked & Deconvolved

Digital Development Processing

Output

Input

Stretched
DEEP SPACE PHOTOGRAPHY
Luminance

Gradient Removal
Levels & Curves I

Take a break again!
Levels & Curves II
Selective Sharpening
DEEP SPACE PHOTOGRAPHY
LRGB

Lum

Align Images

RGB

Combine in Photoshop – Luminosity Blending Mode
DEEP SPACE PHOTOGRAPHY
LRGB

LRGB Demo

• Photoshop
DEEP SPACE PHOTOGRAPHY
LRGB

Initial LRGB

Final Tweaking with Curves
Colour Saturation and Balance
Flatten Layers
Save as 16bit tiff for archiving
Save as 8bit jpeg for sharing
DEEP SPACE PHOTOGRAPHY
LRGB

LRGB Tweaks Demo

• Photoshop
DEEP SPACE PHOTOGRAPHY
Final Image
DEEP SPACE PHOTOGRAPHY

Thanks For Listening

Have A Go

Practice Makes Perfect!

Many of my astro photos are on the MKAS website. I also have an album on Flickr:

https://www.flickr.com/gp/143090818@N03/x3hy54